啊就…一開學就賺到一個228的假日,吃飽閒閒沒事做就把前一天上課抄的筆記打下來嘍!(因為聽說這堂課跟資料結構都是每堂都會小考的,所以課後複習就變得很重要啦!)
在我寫出筆記之前,我還是先來抱怨一下昨天忘記寫到的體課撞球課的事情吧!
我選這門課不是因為我會打球,而完完全全是因著選老師而選的,但一開學學校就偷偷地將我們的老師給換掉了
換老師也就算了,但感覺上是換到一個完全不會打撞球的老師,碎碎唸半天也還好,重點是:他很強硬地要把我們一個個人都固定一張球桌!
你馬幫幫忙,我們班的人那麼多你也只給我們那麼少張球桌,休管女生多就整個禁煙區給他們,你知不知道外面的煙味很臭啊!
而且你不用這樣分,我們有時還能跟不同的人打球,你這樣一分,我們班最強的跟我同桌,那我是還要不要打啊!
休管一桌最多三到四人,他們又不是每次都會來那麼多人,所以還有人一個人一桌!
而我們班哩!四、五個人一個球桌!你說的到好,反正大家不會每次都到
可是不管怎麼說,是怎樣?他們有女生多的班級才算班級嗎?
你不分球桌我們有時也會跟休管或其他班級打球啊!
你現在分了,兩堂課我都打不到幾球我為何要繳九百元啊!
我們一堆同學都在不高興了,真不知道你在想什麼!?
董董~~~你怎麼可以拋棄我們啦!


(接著以下是集合論的筆記分享)

集合論

 

Ⅰ. 集合與元素(Sets and Elements)

(1)    集合(set):把一些具種共通性質的事物,不論順序地收集在一起,並以大括號括住成為一個整體A,則稱A為一個集合。其中的每一事物稱為元素。

 

(2)    集合通常以大寫字母表示,如:A,B,C
集合內的代表元素以小寫字母表示,如:x,y,z


集合

↑↑↑↑
元素

ex. A = {1,2,3,a}

 

 

 

(3)    元素(element):集合中所包含的每一事物,稱為該集合的元素。

 

(4)    集合與元素之間的關係(屬於 或不屬於 )
ex.
設有一集合A = {x,y,z}, x,y,z均為A的元素。

x A, y A, z A, c A

 

 

Ⅱ. 集合的表示法:

(1)    列舉法:將集合中的所有元素逐一列在大括號中。
ex.
公平硬幣:A = {正面,反面}

公平骰子:A = {1,2,3,4,5,6}

 

(2)    結構式:在大括號中描述元素的性質。

ex. A = {x| x是所有的正整數} = {1,2,3…}

B = {x| x2-1=0} = {-1,1}

 

 

Ⅲ. 集合元素個數:n(A)

        A為一個集合,則A中所有元素的個數以n(A)表示。
        ex. A = {a,b,c}  n(A) = 3
                     n({a,b,c}) = 3

 

 

Ⅳ. 空集合:不含任何元素的集合。記作:Φ, { }, {x| xx}  m(Φ) = 0

 

 

Ⅴ. 集合中的元素不需要重複書寫,也是就說相同的元素衹要寫一次即可。

        ex. A = {1,2,2,3,7,a,b,a}  n(A) = 6

                 = {1,2,3,7,a,b}

 

 

Ⅵ. 有限與無限集合:集合元素個數是有限的(數得完)稱為有限集合。反之則稱為無限集合。

        ex. A = {x| x是所有的自然數}  無限集合

           B = {1,a,2,b}  有限集合

 

 

. 部分集合(子集合)若集合A中的所有元素均在集合B內,則稱AB的部分集合或子集合。記作: (A包含於B)  {x| x A x B}

                        (B包括A)

                        開口向大的集合

ex. A = {a,b}, B = {1,a,2,b}    

 

(1)    任何集合A同時也是自己的一個子集合

 or

 

(2)    Φ為任何集合的子集合。



拍謝啊~因word的格式在這用起來比較麻煩,所以有的排的不是很漂亮,請大家多多包含
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 如雲 的頭像
    如雲

    如雲似水

    如雲 發表在 痞客邦 留言(5) 人氣()